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ABSTRACT

This paper extends the validity of exponential tolerance and confi-
dence limits, under certain restrictions, to the class of distribu-
tions with monotone failure rate, In particular, the usual
exponential lower tolerance limit is shown to be conservative for
the increasing failure rate class of distributions in the range of
population coverages and confidence coefficients of practical in-
terest., Conservative confidence limits are also obtained on tail
probabilities and moments.



CONSERVATIVC TOLLRANCL AND CONFIDL..CL LIMITS

1, Introduction

A fundamental problem in statistical reliability theory and life testiny
is to obtain lower tolerance limits as a function of sample data, say

X = (Xl 5 X2 N 100 oK Xn ). That is, if X denotes the time to failure of an

item with distribution F , then we seek a function L(X) such that

P{1-F[LX)]>1-q}->1-aqa.

We call 1 - q the population coverage for the interval [L(X), =! and
1 - a the confidence coefficient. Another important problem is to obtairn

a function M(X) such that

P{1=-F7T >MX% }>i-a

>
-—

for a specified time T > 0 , Related problems are those of obtaining con-
fidence limits on moments and percentiles.

tarly papers in life testing (e.g. ipstein and Sobel (1953) ) derived
confidence limits assuming an exponential life distribution. Goodman and
lladansky (1902) examine various criteria for goodness of tolerance intervals
and certain optimum properties of the usual exponential tolerance limits
are demons*.ated. Recently, a great deal of effort has been devoted to ob-
taining various confidence limits for the Weibull distribution. Dubey (! :.)
obtains asymptotic confiaence limits on 1 - F(1) and the failure rate forv
the class of Weibull distributions with non-decreasing failur. rate. . e

aiso studies the properties of various estimators for Weibu ll parameters



‘Dubey (1963) ), Johns and Lieberman (1965) present a method for obtaining
wa~t lower confidence limits for 1 - F(T) when F is the Weibull distri-

curion with both scale and shape parameters unknown. Unlike Dubey, they

d2 not require that the Weibull distribution in question have a non-decreas-
ing failure rate. These confidence limits are obtained both for the censored
and non-censored cases and are asymptotically efficient. Hanson and Keop-
wans (1964) obtain upper tolerance limits for the class of dist-ibutions

with increasing hazard rate and lower tolerance limits for the clasz ot dis-
tzibutions with PFZ density, f (i.e. log f(x) is concave where finitce).
idswever, they do not assume non-negative random variables.

Assuming that the sample data arises from a distribution with monctone
tailure rate (either non-decreasing or non-increasing and F(0') = 0 ) we
shtain conservative confidence limits for most reliability parameters of
interest, These confidence limits are, in part, derived from the expornential
iistribution. Since in many cases these are optimum confidence limits when
the fatlure distribution is exponential (Goodman and Madansky (1962) ). they
are, in this sense, best possible for the class of distributions with monno-
rone railure rate. (See Barlow and Proschan (1965) Chapter 2 and Appendix
2 for a discussion of distributions with monotone failure rate and a iest
¢or its walidity.) They also have the advantage that they are ~onvenient
t~ zompute and are not based on a strong, non-verifiable, parametri: assump-
1-n. Sin<e these confidence limits are derived in part from the expcnen-
rial distribution this paper, in a sense, represents a new justification fo

rt= .<se Hf exponential confidence limits in reliability theory.

2 Smmary and Discussion of Results.

Ler Xl <X

S eee X < 4ae :_xn denote an ordered sample from a life

2 r

=9 =



distribution F . We shall only allow the possibility of censorship on ta
right. Our methods will be used to obtain confidence bounds for more gen-
eral types of censorship in another paper.

We say that a distribution F is IFR (DFR) if and only if

In [1 - F(x)] 1is concave where finite (convex on [0,>] ). If F with den-

sity f 1is IFR (DFR) then the failure rate f(t) is non-decreas.n;,
1 - F(t)

(ncn-increasing) in t. Barlow and Proschan (1904) obtain inequalities for
expected values of statistics based on the exponential assumption when in
fact the true distribution has a monotone hazard rate.

IFR Results

Let . r
'r,n = b Xi + (n-r) Xr
1
r
and
2
-2r 1n(l-q) if xl_Q(Zr) > =2n In(l-q)
2
xl_a(Zr)
Cl-a,q(r) = )
r if xz (zr) < =2n In(l-q)
— l_a =3 r 4
\ n

where Xi_o(Zr) is the (l-a)-th percentage point of a chi-square distri-

bution with 2r degrees of freedom.

THEOREM 1. If F is IFR, F(0 ) = 0 , Lq = SUP { » F(x) <q
then
] >1-q}2>21-a

() Pil-FlC () e



Mathematically (1) and (2) are equivalent statements. When

_,(2r) > =2n 1n(1 - q) , the lover tolerance limit provided by (1) is

idertical with the exponential tolerance limit. Amazingly enough, the ex-
pcnential lower tolerance limits provide conservative tolerance limits for

most cases of practical interest. For example, if 1 -a > 1 - e.1 v ,633

r/n

snd 1~-q>e » then the inequality xi_a(Zt) > =2n 1n(l - q) holds.

In the sense of being "most stable (see Goodman and Madansky)1962) ) this
1s the best lower tolerance limit for the exponential distribution and hence
a "sharp" conservative tolerance limit. If the full sample is known this

is "best" for r=n .,

Let
(-2: In(l - @ if x2(2r) < -2 a(i-q)
X225
* I
c“vq(t) .
|
2 - \
(_ r if xa(Zr) > =2 in(1l-q)-

THEQREM 2, If F is IFR, F(0 ) =0 , Cq = gup { x'F(x).: q !}
then

(3 \ [Ck -
(3 P{FCy (Mo 12q)}21-a

(%) P{¢g x C:,q(t) er

-aq_ n}ll-u.

in this case the exponential upper tolerance limits are valid when

xi(Zr) <=2 In(1 - q) . Unfortunately this inequality does not hold for all



values of r (1 <r <n) in the range of population coverage values, q ,
of greatest practical interest. A table follows which gives the largest

values of r such that

xi(Zr) < =2 1n(l -q) .



Table 1

Largest values of r such that
the exponential upper tolerance
limit is a conservative upper
tolerance limit for the IFR class,

(1.e. xi(Zr) <=2 1n(1l -q))

—

1l -a=.90 e s S 05
P ) 1
. 1
r r | r
I\
]
.70 3 3 ' 4
|
.75 3 : 3 5
.80 3 5 5
{
.85 4 4 6
.90 4 5 6
\
.95 5 | 6 8
.97 6 ! 7 8
.98 6 7 l 9
.99 7 8 10
{
.999 10 11 14 :
J




The upper tolerance limit given in (3) is a significant improvement over
the tolerance limit given by Hanson and Koopmans (1964) for the IFR class.
However they do not restrict attention to non-negative random variables.

Also they do not obtain a lower tolerance limit for the iIFR class.

THEOREM 3. If F is IFR, F(0) =0 and T > 0 is specified,

then

2r 6

s xa_ (20 T
’S) P 1°F(T):6(:er.n"r) SXD ([ me————— > 1 = a
r,n

where 1 o ol
6(x) -

0 if <0,

Johns and Lieberman (1965) study the problem of obtaining lower confidence

limits on 1 - F(T) for the Weibull distribution. (5) is more convenient

than their result. However, if ﬁ-er . T our result is trivial. Iif
1 ]
ﬁiér = T , then it is identical with the exponential lower confidence

limit. In reliability applications where it is desired to establish high
reliability the mean, hopefully, will far exceed T and therefore it seems

quite likely that er " will also.

THEOREM 4., If F 4s IFR, F(0) =0 and 6 -Of“ x dF(x) ,

then

® P {e<k 6 }>1l-a



(7) P 8 > 3 2r Gr . >1-a,
xa(Zr) i
where
2
r if x (2r) > 2
a i}
k =
A, T
2r
2 2
X (2r) i @0 <2,

Similar confidence limits can be obtained for higher order moments.
The upper confidence limit on 6 in (6) is the usual exponential con-

fidence limit when xi(Zr) < 2 ., Unfortunately this condition is not satis-

fied for values of r greater than 3 or 4 at the usual significance levels.
In acceptance sampling the following hypothesis testing problem is con-

sidered:

versus H, ¢+ 6 <6 |,

The rejection region for the exponential case is of the form:

2
. Po xJ(Zr)

Reject Ho if br.ni 5

It x2(2r) 2 , then by (6) this test is alsu a size a test for the IFR
X

) 6 x2(2r)
P . « 22— [ FIFR ; & > ¢ Ca .
r,n — 2r o -



DFR Results

As we might expect, 1f a useful exponential confidence limit exists
for a problem relative to IFR distributions, then no useful exponential
confidence limit exists for the same problem relative to DFR distributions

and conversely.

THEOREM 5. If F is DFR, F(0 ) =0 , Gq = SUP { x]F(x) <q} and

Xi_a(zr) < =2n 1n(l - q) , then

=2r In(1 - q) -
(8) P 1-F 2 6 >1-q >1 -a
(2r) -

xl-a

.z -2r21n(1 - q) 6 Bilm )=
X]—q (20)

(9) P g

If xi_a(Zr) > =2n In(l - q) we can only make the trivial statement

P{C>0}>1-Q.
q_ —

For most cases of practical interest -- high confidence and high population

coverage -- (8) 1is not a useful result.

THEOREM 6. If F 1is DFR, F(0') = 0 , Cq = SuP { x| F(x) <q} and

x§(2r) > -2 1In(1 - q) , then

(1l p ) p| U9 ]iqjil—a
r,n
x, (2r)




. G-
T e i

>1‘ao

The upper ccnfidence limit is trivial when xi(Zr) <=2 In(l - q)

Table 2

Smalliest values of r such that
the exponential upper tolerance
limit is a conservative upper tol-
erance limit for the DFR class.

(i.e. xi(Zt) > =2 1n(l - q) )

I - a= ,90 l-a=.,95 l-a=.,99

q i

i ¥ r r
s -Muﬁr

i0 4 4 5
75 4 5 6
Ll 4 5 6
87 5 5 7
G0 5 6 7
) 6 7 9
G 7 8 10
98 8 9 10
4 8 9 il
, 399 il 12 15

o
'

- 10 -



THEOREM 7. If F 1is DFR, F(0) =0 and T > C is specified, then

. -xi_,(Zr) T {
(12) P 1 =P 260 « e, ) ewp [—Sge—i [ >1-q

2r 6
r,n

where

§(x) =

0 if x <0

as before.

THEOREM 8. If F is DFR, F(0) =0 , of°° x dF(x) = 6 and

xi(Zr) < 2n , then
2r 8r "
(13) P B3 SaEILL
X, (2r)

while if xi(Zr) 2 2n , then

L X2 (21)
(14) P e:_;er.nexp e 21=a.

(13) holds for significance levels of practical interest whem r = n .

3, Proofs of Theorems in Section 2.

Let Y denote a random variable with distribution G . If X has a
continuous distribution F , note that Y = G-lF(X) has distribution €

We will repeatedly use the following lemma.

Lemma. If G lF(x) is convex non-decreasing for x > 0 , ¢ Yr0) = 0

-1
and Yi =G r(xi) » then

-I]—



> 0 and I a, =1 (a

whien a
i- i

The pronf is obvious,

In what follows it will be convenient to let

Proof of Theorem 1.

Since (1) and (2) are mathematically equivalent we need only prove (2).

By the lemma we have

[ Y, + (- DY r X+ (0 - 0X
@ L = > F |t = -
i=1 i=1
since G-lF(x) is convex when F 1is IFR. DMNow choose kl_OL so that

< k = ] - a

n 1-a

r Y1 + (n - r)YrJ

i=1
i.e. In(] - kl-o) = -Xl_a(Zrl Since F 1is IFR we know (Barlow and Precschuan
2n
'965), p 27) that
F(t;gq) 2 b(t;;q) =
| Wid

1 - (1.9 % v

.iere iq is the (unknown) gq-th quantile.



Hence

I Y +(n-r1r)Y r - r
G i r| > F(Ee t) > b( =6 52
1 o = n “r,n’ ”q) 250y r,n )
and
P {b (%o 2 )

Since b(t; cq) is non-increasing in ¢ we have

where the inverse is taken with respect to

r
.

Case 1. kl—a-i q (i.e. xi_a(Zr) > -2n In(l - q) ). From the follow-

ing figure
b
' \/_b( S Cq)
q
0 t= ;3
A n .0 q
r , :
we see that b({ vr,n' ’q) < kl_J if and only if
. =2r In(l - q) vth '
q 2
xl_J(Zr)
. , 2 ,
Case 2. k < q (i.e. ¥ (2r) < =2n In(l - q) ). In this case
1-a 1-4 =
b(= = ;3 2) < k if and only if ¢ > = =
n r,n’ °q° = Tl-u y ? n r,n’
In either case we have
P 'q Z Cl-., q(r) S o=



where §
2r In(l - q) 1f x% (2r) > =20 1n(l - q)
xz (2r) 1l-a
l-a
Cleag® * f
3 % if Xi-a(m < =2n In(1l - q)

?ronf_of Theorem 2. Again we need only prove statement (4). We use the
fcilowing inequality which follows from the IFR assumption and the lemma:
r
G[ Y
1

+@-0Y ] < r[;‘:l'x +-nX 1.

i i
We -~hoose ka so that

r
P {G[iY1+(n-r)Yr] >k })w Lepn

a
-x2(2x)
i e. 1n{l - ku) = “g . From Barlow and Proschan (1965) p. 27 we have
2
the sharp bound
t/g
1-(-q ¢ t <,
F(t; cq) < B(t; cq) -
t > *

1 cq

Since 3(t; cq) is decreasing in cq we have
( ~ —1 -~

P iB(: ez,n; t,q) 2k » P{;q <B “(r er.n; ka) >1-a.,
Case 1. k. >4q (i.e. xi(Zr) > =2 1n(1l - q) ). From the following

~

figure we see that B(r Bt.n; cq) :-ka if and only if ;q <r er’n -



qT \\ / B(r E)r.n; :q)

o el

t= s
0 r et,n t_q
Case 2. ka <q (1.e. x§(2r) < =2 In(l - q) ). In this case

B s -2r 1a(i - g)
B(r er,n’ cq) > ka if and only if cq < > :
xu(Zr)

Cases 1 and 2 together establish statement (4). ”

Proof of Theorem 3. Again we use the inequality

r r
§Y1+(n-r)Yr ixi+(n--r)x?/
% n > F n -
and choose kl so that
-a
v sta-n1
n-r
TR o L

n

2
i.e. In(1 - kl—u) = xl-a(zt) . Let p = F(T) . We again use the
2n
sharp bound 0 S

F(t; p) > b(t; p) =

1 - (1-p) A
Then
g
Pib(ner,n'p)ikl-ufll-a'
Since b(t; p) 1is increasing in p , we have
rli-dmri-vtE0 5k )% 1-4
- n r,n® l-a -

- 9k -



n

(3 folicws when we recail that b( <5 ; pp =0 when T > L 8 :
n “y,n* P nog '

’ iLe)

Peoct of Theorem 4, To show (6) use the sharp bound

1 -t/6
i = e /

oo ]
~
-
we

8) < Blg; 6) =
Bariow and Proschan (1965), p, 27)
together with

" 8) <B(xr 8 _3 6)

’ ’

Y. + (n-1) Yr 1« Px Gr

P { B(r Gr sy r kol wig

,0 -’ -
e : ; 2
where 1uf(l - k ) = -x"(2r) as before.
a Q
.
5 : -1 2 s , .
Case 1. k2 i (1.e. xa(Zr) > 2). From the following figure

we see that B(r 8 3 9) >k if and only if 9 < r © ¢
r,n =" ran

] ——
: B(r © i B
- l ~r- .\\gi“
4 o
0 r 6 0
r.,n



-1
Case 2. kd <l-e (i.e. x?(Zr) < 2). Also we see that

B(r 6r,n; &) Z.k& if and only if =« < r,n_ . .ence tie result.
2.,
x (2r)
o
To show (7). Use the sharp bound
0 t <
Flus &) > b (e &) =
1 - e—wt t > -
where w depends on t and satifies
a6) S e dx =,
(see Barlow and Proschan (1905) p. 28),
together with
r
cY, +(n=-1)Y
. i ‘ b( L )
- . > —_—t
& n L r,n’ )z n r,n’

to assert

where In(l - kl- ) = -\‘(Zr) as before, .otice that w = w(+) 1is a
' 2n
function of v and is Jecreasing in <« . hence
_ _,“x,‘.m}
P 3 1 exp [ w() Sl - kl—. {
-In(l! - Ll_ )
= P [ wi) - —t - 1-



or

l - ex [}W‘L é
Since 6 = P n “r. by (16) we have
w

2
- - <-x (2r) .
(] kl-o) [1 - ex ——2———;U 2r v
-1 2n r,n

xi(Zr)

o] [
D >

r,n

which establishes (7).
We omit proofs of the DFR results since they are a straightforward

application of the same techniques applied to bounds on DFR distributions,
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